1,384 research outputs found

    Sharp quadrature error bounds for the nearest-neighbor discretization of the regularized stokeslet boundary integral equation

    Get PDF
    The method of regularized stokeslets is a powerful numerical method to solve the Stokes flow equations for problems in biological fluid mechanics. A recent variation of this method incorporates a nearest-neighbor discretization to improve accuracy and efficiency while maintaining the ease-of-implementation of the original meshless method. This method contains three sources of numerical error, the regularization error associated from using the regularized form of the boundary integral equations (with parameter ε\varepsilon), and two sources of discretization error associated with the force and quadrature discretizations (with lengthscales hfh_f and hqh_q). A key issue to address is the quadrature error: initial work has not fully explained observed numerical convergence phenomena. In the present manuscript we construct sharp quadrature error bounds for the nearest-neighbor discretisation, noting that the error for a single evaluation of the kernel depends on the smallest distance (δ\delta) between these discretization sets. The quadrature error bounds are described for two cases: with disjoint sets (δ>0\delta>0) being close to linear in hqh_q and insensitive to ε\varepsilon, and contained sets (δ=0\delta=0) being quadratic in hqh_q with inverse dependence on ε\varepsilon. The practical implications of these error bounds are discussed with reference to the condition number of the matrix system for the nearest-neighbor method, with the analysis revealing that the condition number is insensitive to ε\varepsilon for disjoint sets, and grows linearly with ε\varepsilon for contained sets. Error bounds for the general case (δ≥0\delta\geq 0) are revealed to be proportional to the sum of the errors for each case.Comment: 12 pages, 6 figure

    Passively parallel regularized stokeslets

    Get PDF
    Stokes flow, discussed by G.G. Stokes in 1851, describes many microscopic biological flow phenomena, including cilia-driven transport and flagellar motility; the need to quantify and understand these flows has motivated decades of mathematical and computational research. Regularized stokeslet methods, which have been used and refined over the past twenty years, offer significant advantages in simplicity of implementation, with a recent modification based on nearest-neighbour interpolation providing significant improvements in efficiency and accuracy. Moreover this method can be implemented with the majority of the computation taking place through built-in linear algebra, entailing that state-of-the-art hardware and software developments in the latter, in particular multicore and GPU computing, can be exploited through minimal modifications ('passive parallelism') to existing MATLAB computer code. Hence, and with widely-available GPU hardware, significant improvements in the efficiency of the regularized stokeslet method can be obtained. The approach is demonstrated through computational experiments on three model biological flows: undulatory propulsion of multiple C. Elegans, simulation of progression and transport by multiple sperm in a geometrically confined region, and left-right symmetry breaking particle transport in the ventral node of the mouse embryo. In general an order-of-magnitude improvement in efficiency is observed. This development further widens the complexity of biological flow systems that are accessible without the need for extensive code development or specialist facilities.Comment: 21 pages, 7 figures, submitte

    Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators

    Full text link
    We show that pairs of atoms optically excited to the Rydberg states can strongly interact with each other via effective long-range dipole-dipole or van der Waals interactions mediated by their non-resonant coupling to a common microwave field mode of a superconducting coplanar waveguide cavity. These cavity mediated interactions can be employed to generate single photons and to realize in a scalable configuration a universal phase gate between pairs of single photon pulses propagating or stored in atomic ensembles in the regime of electromagnetically induced transparency

    Steady-state crystallization of Rydberg excitations in an optically driven lattice gas

    Full text link
    We study resonant optical excitations of atoms in a one-dimensional lattice to the Rydberg states interacting via the van der Waals potential which suppresses simultaneous excitation of neighboring atoms. Considering two- and three-level excitation schemes, we analyze the dynamics and stationary state of the continuously-driven, dissipative many-body system employing time-dependent density-matrix renormalization group (t-DMRG) simulations. We show that two-level atoms can exhibit only nearest neighbor correlations, while three-level atoms under dark-state resonant driving can develop finite-range crystalline order of Rydberg excitations. We present an approximate rate equation model whose analytic solution yields qualitative understanding of the numerical results.Comment: 5 pages,3 figure

    Efficient Implementation of Elastohydrodynamics via Integral Operators

    Get PDF
    The dynamics of geometrically non-linear flexible filaments play an important role in a host of biological processes, from flagella-driven cell transport to the polymeric structure of complex fluids. Such problems have historically been computationally expensive due to numerical stiffness associated with the inextensibility constraint, as well as the often non-trivial boundary conditions on the governing high-order PDEs. Formulating the problem for the evolving shape of a filament via an integral equation in the tangent angle has recently been found to greatly alleviate this numerical stiffness. The contribution of the present manuscript is to enable the simulation of non-local interactions of multiple filaments in a computationally efficient manner using the method of regularized stokeslets within this framework. The proposed method is benchmarked against a non-local bead and link model, and recent code utilizing a local drag velocity law. Systems of multiple filaments (1) in a background fluid flow, (2) under a constant body force, and (3) undergoing active self-motility are modeled efficiently. Buckling instabilities are analyzed by examining the evolving filament curvature, as well as by coarse-graining the body frame tangent angles using a Chebyshev approximation for various choices of the relevant non-dimensional parameters. From these experiments, insight is gained into how filament-filament interactions can promote buckling, and further reveal the complex fluid dynamics resulting from arrays of these interacting fibers. By examining active moment-driven filaments, we investigate the speed of worm- and sperm-like swimmers for different governing parameters. The MATLAB(R) implementation is made available as an open-source library, enabling flexible extension for alternate discretizations and different surrounding flows.Comment: 37 pages, 17 figure

    Binary Oscillatory Crossflow Electrophoresis

    Get PDF
    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation

    Clustering of solutions in the random satisfiability problem

    Full text link
    Using elementary rigorous methods we prove the existence of a clustered phase in the random KK-SAT problem, for K≥8K\geq 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.Comment: 4 pages, 1 figur
    • …
    corecore